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Objective  Description  Completion Date  
Objective 1  Create a statistical shape model of the metacarpo-

phalangeal joint.  
1/4/2016 – Complete 

Objective 2  
 

Create a statistical shape model of the fetlock joint to 
describe its bone mineral density.  

30/8/2016 –Complete 
 

Objective 3a  Predict joint morphology and bone mineral density 
using anthropometric and demographic measurements.  

15/12/2016 – Complete  
 

Objective 3b Write journal manuscript, prepare figures, write paper 30/3/17 – Complete 

 

Objective 1: Create a statistical shape model of the metacarpo-phalangeal joint (MCPJ) 

capable of reproducing the variation in joint shape to within 2mm RMS error.  

Status update: This stage of the project is complete.  

Methods overview 

Table 1:  Subject information on the 40 thoroughbreds used for the study 

Age 22 4yo+ 11 0-4yo 7 age unknown  

Sex 26 female 11 male 3 unknown 

Racing history 12 raced 5 unraced 23 unknown  

A sample population of 40 left and right MCP joints (Table 1) from slaughtered TB horses was obtained 

from an abattoir, and used to create a statistical shape model. The MCP joints were scanned using a 

computed tomography (CT) scanner (140 KV, in plane resolution 0.3 mm, out of plane 0.6 mm, 

SOMATOM Definition Flash, Siemens Healthcare) (Figure 1a).  

Data clouds representing the surfaces of the third metacarpal bone, the proximal phalangeal bone, and the 

medial and lateral proximal sesamoid bones were segmented from the images using Stradwin (Cambridge 

University, Cambridge, UK) (Figure 1b). 

A single surface data cloud from each bone was chosen as the template joint, and a custom cubic-

Lagrange piece-wise parametric mesh was manually created to closely fit the surface. This template mesh 

was fitted to the remaining data clouds in the training set via an iterative fitting process (Figure 1c).  



 

The fitted meshes were then rigidly aligned to each other by minimizing the least squared distances of 

corresponding points. The purpose of this process is to create a consistent mesh that accurately represents 

the segmented point cloud for all specimens. [1, 2] 

 
Figure 1: Pipeline for creating the statistical shape model - geometry only. 

  
A Principal Component Analysis, or PCA, was carried out on the mesh node coordinates to obtain a shape 

model, and determine the principal directions and weights of variation in the population.  

As size normally dominates the first principal component, a general Procrustes analysis [3, 4] was 

performed on the data, which is a least squares minimization of correspondent point differences to 

account for overall size variation.  

Results 

 
Figure 2: Principal modes of variation. a) The first principal component of the third metacarpal bone, showing the 

two extremes as solid beige and transparent red, b) second principal component, c) the coupled first principal 

component of variation for the four bones in the MCPJ. 

PCA was used for dimensionality reduction, so that any shape in the training set can be represented by a 

mean and a weighted sum of principal components.    

The first 10 principal components of the size-normalized model accounted for 75% of the variation. There 

was a noticeable decrease in the gradient of the cumulative variation curve around the third principle 

component, suggesting that subsequent modes were not uniquely and consistently defined (Figure 3).  

Examination of the eigenvalues produced by the PCA showed that the first mode in the size-normalized 

model contained 27% of the variance in the training set in the left leg, and about 19% of the variance in 

the right leg. This mode appeared to be dominated by a thickening of the metaphysis, without showing 

much variance in the articulating surfaces (Figure 2a). The second mode, accounting for about 16 and 



 

12% of the variance in the right and left leg respectively, appeared to describe the height of the sagittal 

ridge, a feature to which some research has linked  

fracture risk (Figure 2b). [5] I also performed a PCA on the coupled shape changes of the four bones 

making up the MCP joint. The first mode showed a thickening of the metaphyses of the third metacarpal 

bone and the proximal phalangeal bone, and a thickening of the apex of the sesamoid bones (not visible in 

the image) (Figure 2c).  

Conclusion 

The fit of the template mesh to each dense surface cloud was accurate to 0.36 mm RMS error, so we are 

confident in the accuracy of the final population model.  

 

Objective 2: Incorporate bone mineral density into the statistical shape model.  

Status update: This stage is complete. We created two correlated shape/BMD statistical shape models 

for this analysis. Initially we created a high quality tetrahedral mesh of the third metacarpal bone, and fit 

this to all the other bones using a two-step host mesh fitting process. However, it proved difficult to 

reduce the dimensionality of this model into meaningful modes, possibly due to the averaging effect of 

the interior elements. The second model sampled each node on the surface by projecting a normal vector 

0.5 mm into the bone and averaging along this vector. Each training example, described by their nodal 

coordinate positions and modulus value at each node, will then be analysed by PCA using a correlation 

based approach. [6]  

Introduction 

Figure 3: Variation and cumulative variation represented by principal component number in size-

normalized models of the left (blue) and right (orange) third metacarpal bones 



 

The aim of this study was to use a statistical shape and image intensity model to investigate the 

relationship between the bone shape and the spatial distribution of bone mineral density in the equine 

third metacarpal bone. 

We predicted that the main source of variation will be a scaling of the bone. An increase in size will be 

correlated to an increase in subchondral bone mineral density (SCB BMD). 

Secondly, we hypothesize that variation will be present in the relative area of the metacarpal condyles. It 

is known that the medial condyle is larger in area and less angled that the lateral condyle [7-9] and also 

experiences higher load [10-13]. We predict that an increasing ratio of medial to lateral condylar area will 

be correlated to increased asymmetry in BMD in the bone regions that articulate with the proximal 

phalangeal and proximal sesamoid bones.  

Methods 

Overview 

To understand the variation in the morphology and bone mineral density of the MCPJ across the 

population, a statistical model was trained using computed tomography (CT) scans collected from 40 

thoroughbred horses. The development of the statistical shape model was based on the methods of Zhang 

et al. [1] This required establishing correspondence between each specimen so that the location and bone 

mineral density at any given point in one model can be related to an equivalent point in another model. 

The workflow describing these steps is illustrated in Error! Reference source not found.Error! 

Reference source not found. and described below. 

 
Figure 4: Workflow to generate a statistical shape model of the metacarpo-phalangeal joint using CT imaging data 

 

Specimens 

The MCP joints used in this study were from 40 thoroughbred horses sent to the abattoir for reasons 

unrelated to MCP joint injury. Some information on the horses was obtained from the brands on the 

shoulder of the animals (Table 1), but on occasion this was unable to be traced, or not visible.  



 

A: Imaging protocol 

The left and right MCP joints were bisected proximally at approximately halfway down the MC3, and 

distally at halfway down the proximal phalangeal bone. The joints were labelled and frozen prior to being 

transported to the imaging center. The MCP joints were scanned using a Siemens SOMATOM CT 

scanner (140 KV; in plane resolution 0.3 mm, slice thickness 0.6 mm). The bones were scanned in the 

same image space as a hydroxyapatite (HA) phantom with a known mineral density of 800mg/mm
3
. 

B: Segmentation and calculation of apparent bone mineral density 

Data clouds representing the surfaces of the third metacarpal bone (MC3), the proximal phalangeal bone 

(PP), and the lateral and medial proximal sesamoid bones (PSB’s) were segmented from the CT images 

using Stradwin (Cambridge University, Cambridge, UK), and constitute the sample population, or 

“training set”.  

C: Alignment and fitting 

The development of the statistical shape model was based on the methods of Zhang et al. [1] 

From the training set, one mesh was chosen as the template, from which a custom template cubic 

lagrange, piece-wise parametric mesh was created to closely fit the surface. [14] This mesh was 

subsequently brought into close alignment (<0.5 mm RMS) with each data cloud using host mesh fitting. 

[2]  Following this, a rigid alignment minimized the least squares distances of corresponding points, such 

that PCA could be performed on the node coordinates to obtain a shape model. [1, 2] 

The shape model could then be used to refit the mesh, to decrease the fitting error, and propagate fitting 

correspondence. This was performed iteratively until the RMS was reduced to <0.3 mm and did not 

continue to decrease. Finally, a principal component analysis (Section E) on the maximally correspondent 

meshes yielded the principal components of variation in the bone.   

Section C.1 Morphometry analysis  

MC3 morphometric measurements (Figure 5) were automatically taken on the surface meshes segmented 

from CT images. As a single correspondent mesh was fitted to each bone during segmentation, each MC3 

surface was parameterized by a common coordinate system, allowing anatomical features to be defined 

by singular nodes (MC3 width, ridge width) or sets of face elements (condylar area/total area). These 

measurements were used to quantify the variation observed in the model.  



 

 

Figure 5 Initial estimates of third metacarpal shape and material parameters to quantify changes observed in the 

principal component analysis. 

D: Mapping fitted meshes back to CT data 

Once the surface mesh was fit to the specimen geometry, it was mapped back to the original DICOM files 

using a custom Python script. At each node location, a vector normal to the surface was projected inwards 

5 mm, which is the approximate depth of equine sub-chondral bone affected by exercise. [Brama 2009] 

The CT data was sampled along this vector, and the average value (Hounsfield Units) was assigned to the 

node. 

The bones were scanned in the same image space as a hydroxyapatite (HA) phantom with a known 

mineral density of 800mg/mm
3
.
 
Greyscale values were converted from Hounsfield units to apparent bone 

mineral density with the following equation:  

 

  (1)

 

 

Modulus values were calculated by using the empiric relationship described by Dalstra et al [15, 16]: 

 

rHA =
CTbone -CTH2O

CTHA -CTH2O

´ rPhantom



 

   (2) 

 

Where ρapp is the apparent bone mineral density (g/cm
3
) and ρHA the HA equivalent density calculated 

from equation (1).  

E: Principal Component Analysis of Shape and Bone Mineral Density 

The correspondence between every training example enabled the location and material properties at any 

given point in the model can be directly related to an equivalent point in another model.  

PCA provided a statistical technique to decompose the data in the training set into its significant 

components. The training dataset was an N × 3n matrix, where N is the number of geometries in the 

training set and n is the number of nodes in the mesh. This PCA model allowed any shape x in the 

training set to be approximated as a sum of the mean shape 𝑥̅ and the weighted sum of n principal 

components ϕ. [1] 

𝑥 = 𝑥̅ + ∑ 𝜔𝑖𝜙𝑖
𝑛
𝑖=0  (3) 

In the model above, to create a new bone instance x, sum the mean of the training geometries 𝒙̅, with the 

product of n included basis vectors with the coefficients controlling their influence (𝝎𝒊). N is chosen such 

that the accumulated variance explained by the components accounted for 80% of the total variation in the 

population. Singular value decomposition was used to reduce the size of the correlation matrix. [17] 

To incorporate bone mineral density, a point distribution model was used. In this case the training dataset 

was an N × 4n matrix, containing dimensional data x, y, and z with modulus data I. [6, 18]  Jolliffe [19] 

found that a correlation based PCA approach was more suited to data with mixed units, as here where 

distance and modulus are present (as opposed to the commonly used covariance approach). This PCA 

model was able to examine the effect of each principal mode of variation on shape and spatial variability 

of bone density.  

Quantitative analysis 

For each principal mode of variation, the joint shape was reconstructed at ±2 s.d, to represent 95% of the 

population. Metrics including the total area, the condylar area and the medio-lateral width (Figure 5) were 

compared to literature and used to quantitatively describe the variation.  

Results and Discussion: 

Summary 

A three dimensional statistical analysis of the third metacarpal bone is presented.  The main modes of 

variation in the shape and bone mineral density distribution are presented individually, and to correlated 

effect. The purpose of this study was to characterize the size, shape and material properties of the MC3 

bones in a cohort of 40 healthy thoroughbred subjects, using a statistical shape model. We characterized 

morphological differences in the population of third metacarpal bones using a pure shape model, and 

investigated form-function relationships using a point distribution model which incorporated sub-

chondral bone mineral density information at the surface nodes. 

Principal Component Analysis 

For the PCA conducted on the shape along, 85% of variation was captured in the first ten principal modes 

of variance. The BMD field PCA was slightly more compact, covering 89% of variation. The combined 

shape and BMD PCA accounted for 74% variation in ten modes. As evident in Figure 6, for all models, 

the first component (size) accounted for most of the variation.  

rapp =
rHA

0.626
,E = 2017.3rapp

2.46



 

 

 
Figure 6 Absolute and cumulative variation for the principal component analysis on shape, BMD and combined 

shape/BMD models. 

 

The physical effect of each eigenmode on material characteristics was investigated by manipulating each 

mode in isolation and visualizing the result.  

Variation represented by the first three components of the combined PCA model is shown in Table 2. The 

components respectively represent, (1), positive scaling in overall size with associated SCB BMD 

increase, (2), increased ridge prominence on the dorsal metaphysis, coupled to increased BMD in that 

region, and (3), a change in condylar area ratio with associated increased dorsal BMD. These modes of 

variation matched the variations seen in the first three components of the shape-only and cortical 

thickness only PCA models.  

 



 

Table 2 The first three principal components of variation for the correlated shape and bone mineral density PCA on 

the third metacarpal bone. 

  
 

Morphological variations  

This process of fitting a correspondent mesh to subject-specific geometries from CT can introduce 

artificial variations into the models. However, the major principal components exhibited expected 

anatomical variations without any visible geometric abnormalities, suggesting that the model-creation 

process did not introduce significant noise to metacarpal shape or BMD distribution. 

The first component of the shape and cortical thickness combined PCA model described an overall 

scaling of the bone epiphysis and was coupled to an increase in surface bone mineral density, especially 

in the regions where the proximal phalangeal bone and proximal sesamoid bones articulate with the MC3. 

This is an expected result for biomechanical applications of statistical shape models. [1, 2, 6] 

The second mode of variation can be qualitatively described as an increased convexity of the dorsal 

metaphysis. This was coupled to increased BMD at the dorsal extremity of where the proximal phalangeal 

bone articulates with the MC3 at the gallop.  

The third mode of variation, which only accounted for 7% of the total variation, showed a change in 

lateral condylar area relative to medial condylar area. As the condyle reduced in relative area, the BMD at 

the dorsal regions increased uniformly across the joint. This was not a sufficiently clear result to support 

our hypothesis that increased shape asymmetry would correlate to BMD medio-lateral asymmetry.  

The influence of the modes provides an insight into how this set of metacarpal bones vary, however these 

modes will never occur in isolation. Any metacarpal bone in reality will be the product of the combined 

effect of a number of modes, which may result in the features observed being cancelled out or 

exaggerated. 

Additional statistical analyses are described in the associated articles (Objective 3b) to augment our 

confidence in the ability of the model to reproduce expected variation (leave-one-out analysis), and to 

ensure the sampled population used was representative.    



 

The immediate next step we have planned for this research is to use these statistical predictions in an 

existing finite element model. The effect of these shape and material changes on stress distribution 

throughout the joint may contribute more to this hypothesis. 

Objective 3A: Predict joint morphology and bone mineral density using anthropometric 

and demographic measurements. 

Introduction  

Finite element methods have been used in equine research to model stresses on the third metacarpal bone 

[8, 20-22]. Finite element modelling is usually based off data collected from computer tomography (CT) 

and/or magnetic resonance imaging (MRI). These images create a subject specific model for bone 

material and geometry. A finite element analysis performed on these models can infer stresses and strains 

unique to that subject for a range of loading conditions. The validity of these models to then infer fracture 

and bone disease risk to a different horse is limited, as the mechanical contribution is dependent on of 

shape and material distribution, which has an unquantified variation across the population.   

Finite element models of the Equine fetlock joint are not currently used as a diagnostic tool, due to the 

difficulty and expense of obtaining diagnostic images from live animals for subject specific models. The 

goal of this research was to investigate whether basic measurements of bone geometry could be used to 

predict third metacarpal bone shape using partial least squares regression.   

Using anthropological and morphometric data to predict geometry and cortical thickness has been 

extensively studied in the human femur [1, 23, 24]. Morphometric measurements constrained the 

predicted geometry and were found to be more successful than anthropological data in predicting shape, 

reducing the fitting error to less than 2 mm. [1]  

This predictive model presents a new way to infer subject-specific 3-D MC3 morphology from sparse 

subject data for biomechanical simulations 

Methods 

 

Figure 7 Workflow for partial least squares regression 

As described in Objective 2, the MC3 surface in each CT image was automatically segmented and 

converted into digital 3-D models, on which shape analysis and morphometric measurements were then 



 

performed. MC3 morphometric measurements (Figure 5) were automatically taken on the surface meshes 

segmented from CT images. As a single correspondent mesh was fitted to each bone during segmentation, 

each MC3 surface was parameterized by a common coordinate system, allowing anatomical features to be 

defined by singular nodes (MC3 width, ridge width) or sets of face elements (condylar area/total area).  

Principal component analysis (PCA) was performed on the population of MC3 models and BMD was 

sampled at the surface to model the main modes of variations.  

Inverse statistical models for predicting cortical morphology from morphometric data were created using 

partial least-squared regression (PLSR). For the PLSR, the mean-centered data matrix used for the 

combined shape and BMD PCA was used as the response matrix. In each model, PLSR was used to find 

components of maximal covariance between the predictors and the response. During prediction, unseen 

predictors are projected as weights for the components, which allow the response to be reconstructed as 

the weighted sum of the components (Figure 7). For shape prediction, RMS surface-to-surface distance 

was calculated between actual and predicted surfaces. Further detail on inverse statistical models can be 

found in [1] and [18]. 

Results and Discussion 

Using morphometric measurements, the PLSR was able to recreate third metacarpal bone shape to 1 mm 

RMS. This was expected as measurements are directly correlated to third metacarpal bone geometry. 

Qualitatively, most errors in prediction occurred on the metaphysis, with both width and sagittal ridge 

height in this location underestimated. Prediction accuracy was high over the distal articulating surface of 

the joint.  

 

The PCA of third metacarpal bone shape produced a less compact model than similar studies on human 

joints, in which up to 99% of shape and size variation was captured in less than ten significant 

components. [1, 2, 25] The shape model performed here accounted for 84% of the variation in the first ten 

modes, with more than 25 modes required to represent 99% variation. The cumulative variation curve 

(Figure 6) is expected to flatten when the components are no longer uniquely and consistently defined. [2] 

Increasing the number of predictive weights in the PLSR beyond the first four showed an increase in 

RMS fitting error, suggesting that those modes only describe noise.   
 

Objective 3B: Submit two journal articles 

Two papers have been completed, and are currently being reviewed by the supervisory team.  

The first paper, entitled “Correlated shape and bone mineral density features in the equine third 

metacarpal bone” will be submitted to the open access journal PLOS.  

The second paper entitled “Using PLSR as a predictive tool in describing third metacarpal bone shape” 

is a technical paper on the use of partial least-squared regression in predicting third metacarpal epiphyseal 

shape.  

Conference Abstracts: 

Liley, H., Firth, E., Fernandez, J., Besier, T., Zhang, J. (2016) “Shape variation in the equine 

metacarpophalangeal (fetlock) joint” European Society of Biomechanics Annual Congress, Lyon, 

France 



 

Liley, H., Besier, T., Firth, E., Davies, H., Fernandez, J. (2015) “Age-related shape 

characteristics in the equine fetlock joint” Australia and New Zealand Orthopaedic Research 

Society Annual Meeting, Auckland, NZ 
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